Parkinsonism and vigilance: alteration in neural oscillatory activity and phase-amplitude coupling in the basal ganglia and motor cortex.
نویسندگان
چکیده
Oscillatory neural activity in different frequency bands and phase-amplitude coupling (PAC) are hypothesized to be biomarkers of Parkinson's disease (PD) that could explain dysfunction in the motor circuit and be used for closed-loop deep brain stimulation (DBS). How these putative biomarkers change from the normal to the parkinsonian state across nodes in the motor circuit and within the same subject, however, remains unknown. In this study, we characterized how parkinsonism and vigilance altered oscillatory activity and PAC within the primary motor cortex (M1), subthalamic nucleus (STN), and globus pallidus (GP) in two nonhuman primates. Static and dynamic analyses of local field potential (LFP) recordings indicate that 1) after induction of parkinsonism using the neurotoxin MPTP, low-frequency power (8-30 Hz) increased in the STN and GP in both subjects, but increased in M1 in only one subject; 2) high-frequency power (~330 Hz) was present in the STN in both normal subjects but absent in the parkinsonian condition; 3) elevated PAC measurements emerged in the parkinsonian condition in both animals, but in different sites in each animal (M1 in one subject and GPe in the other); and 4) the state of vigilance significantly impacted how oscillatory activity and PAC were expressed in the motor circuit. These results support the hypothesis that changes in low- and high-frequency oscillatory activity and PAC are features of parkinsonian pathophysiology and provide evidence that closed-loop DBS systems based on these biomarkers may require subject-specific configurations as well as adaptation to changes in vigilance.NEW & NOTEWORTHY Chronically implanted electrodes were used to record neural activity across multiple nodes in the basal ganglia-thalamocortical circuit simultaneously in a nonhuman primate model of Parkinson's disease, enabling within-subject comparisons of electrophysiological biomarkers between normal and parkinsonian conditions and different vigilance states. This study improves our understanding of the role of oscillatory activity and phase-amplitude coupling in the pathophysiology of Parkinson's disease and supports the development of more effective DBS therapies based on pathophysiological biomarkers.
منابع مشابه
Phase-amplitude coupling, an indication of bursting in parkinsonism, is masked by periodic pulses.
Interactions between neural oscillations in the brain have been observed in many structures including the hippocampus, amygdala, motor cortex, and basal ganglia. In this study, one popular approach for quantifying oscillation interactions was considered: phase-amplitude coupling. The goals of the study were to use simulations to examine potential causes of elevated phase-amplitude coupling in p...
متن کاملSubthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease
OBJECTIVE High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson's disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. METHODS We analysed an extensive data set comp...
متن کاملNonsinusoidal oscillations underlie pathological phase-amplitude coupling in the motor cortex in Parkinson's disease
Parkinson’s disease (PD) is associated with abnormal beta oscillations (13-30 Hz) in the basal ganglia and motor cortex (M1). Recent reports show that M1 beta-high gamma (50-200 Hz) phase-amplitude coupling (PAC) is exaggerated in PD and is reduced following acute deep brain stimulation (DBS). Here we analyze invasive M1 electrocorticography recordings in PD patients on and off DBS, and in isol...
متن کاملPathophysiology of parkinsonism.
The motor signs of Parkinson's disease are thought to result in large part from a reduction of the level of dopamine in the basal ganglia. Over the last few years, many of the functional and anatomical consequences of dopamine loss in these structures have been identified, both in the basal ganglia and in related areas in thalamus and cortex. This knowledge has contributed significantly to our ...
متن کاملTitle : Subcortical - Cortical Network Dynamics in the Human Brain
Copyright Information: All rights reserved unless otherwise indicated. Contact the author or original publisher for any necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more at The cerebral cortex is connected to various subcortical structures such as the thalamus and the basal ganglia (BG). The diffuse yet specific patterns of structural connectivity of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 118 5 شماره
صفحات -
تاریخ انتشار 2017